Menu Fermer

On the NS system with the dynamic slip boundary condition

Orateur : Michael Zelina
Établissement : Charles University, Prague (République Tchèque)
Dates : 2024-09-19 – 2024-09-19
Heures : 15:30 – 15:30
Lieu : Salle 0-6

Résumé :
We consider the Navier-Stokes-like system describing an incompressible fluid in 2D domain Ω, which is either a bounded Lipschitz domain or an infinite
channel. The system is completed with the so-called dynamic slip boundary condition:

β ∂_t u + α s(u) + [S(Du)n]_τ = βh,
u · n = 0

We will summarize our results on the existence of finite-dimensional attractors for such a problem together with a specific upper bound of its fractal dimension. We will also mention what is known about the analogous 3D situation and outline some possible future research directions.
The talk is based on a series of joint works with Dalibor Pražák.

Laisser un commentaire

Votre adresse e-mail ne sera pas publiée. Les champs obligatoires sont indiqués avec *